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Abstract

We devise a class of fast wavelet based algorithms for linear evolution equations whose

coefficients are time independent. The method draws on the work of Beylkin, Coifman, and

Rokhlin [1] which they applied to general Calderon-Zygmund type integral operators. We

apply a modification of their idea to linear hyperbolic and parabolic equations, with spatially

varying coefficients. A significant speedup over standard methods is obtained when applied

to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
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1. Introduction

During the last few years a number of fast computational algorithms have been developed

for elliptic problems. These are techniques for which the number of arithmetic operations

needed are close to linear as a function of the number of unknowns. Examples of algorithms

of such complexity are multigrid methods and the so-called fast Poisson solvers. The fast

multipole method and wavelet based methods for elliptic problems formulated as integral

equations also-belong to this category [8], [1].

There has not been the same progress for hyperbolic and parabolic methods. In general

classical numerical techniques for these problems are already optimal.

Consider a system of evolution equations.

(1.1)

Otu + L(x,O_)u = f(x), x C ft c R d, t>0,

u(x,o) =uo(x),

with boundary conditions, where L is a differential operator.

An explicit discretization of this problem typically takes the form,

u'_ _ u(xj,tn), tn = nAt,

xj = (j, Ax,,...,jaAxd)

(:.2)

u, F E R Na, At = const. [Ax] r.

The vector u '_ contains all the unknowns uy at time level t,_. For simplicity we shall assume

j_ = 1,2,...,N in all dimensions u = 1,...,d.

The matrix A is (N d x N d) with the number of elements _ 0 in each row and each

column bounded by a constant. Every time step requires O(N d) arithmetic operations and

the overall complexity for a time interval of O(1) is of the same order as the number of

unknowns, ©(Nd+").

There are, however, some fast methods based on the analytic form of the solution opera-

tor. In [3] the multidimensional heat operator, with Uo and f both zero, but with inhomoge-

neous boundary data given at M points, was treated. There the closed form of the solution

evaluated at M points at time level N was obtained in O(NM) rather than O(N2M 2) op-

erations. Also, in [4], the same authors obtained an algorithm for evaluating the sum of

N Gaussians at M arbitrarily distributed points in O(N + M) operations. So far, their
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interesting method appears to need an explicit analytic representation of the heat kernel,

effectively ruling out variable coefficient problems.

The formula (1.2) has a simple closed form solution

n-1

(1.3) u"= A°u0+ E A F.
v'=0

This form can be used to compute the solution A"uo, for F = 0, in log n steps, (n = 2 m, m in-

teger; here and throughout, log n = log 2 n) by repeated squaring of A : A, A 2, A 4, AS,..., A 2''.

Unfortunately the later squarings involve almost dense matrices and the overall complex-

ity is O(N 3d log N) which is larger than that using (1.2) directly.

For an appropriate representation of A in a wavelet basis all of the powers A _ may be

approximated by sparse matrices and the algorithm using repeated squaring should then be

advantageous.

We shall consider the following algorithms for the computation of the closed form solution

(1.3) of the inhomogeneous problem in m = log n steps,

B := SAS -1

(1.4)

C::I

C := TRUNC(C + BC, _) "[
(iterate steps)f m

B := TRUNC(BB, _)

u '_ := S -1 (BSu ° + CSF).

The matrix S corresponds to a fast transform of wavelet type and the truncation operator

sets elements in a matrix to zero if their absolute value is below a given threshold.

{ aij=a_j laij]>¢(1.5) fi, = TRUNC(A,c) : _ -
aij=0 la_jI<e.

It is easy to see that algorithm (1.4) is equivalent to (1.3) for _ = 0. This is not so for ¢ > 0

and also for F _ 0. We shall however show that it is possible to choose ¢ small enough for

the result of (i.4) to be arbitrarily close to (1.3) but still with very few arithmetic operations.

For a fixed predetermined accuracy level the computational complexity to calculate a one

dimensional hyperbolic equation can be reduced from the standard O(N 2) to O(N(log g)3).

The extra cost per time step is minimal. This also makes it possible, as a curiosity, to use

algorithms which are unstable in the traditional sense.

Our technique is even more favorable for parabolic problems. A d-dimensional explicit

calculation with standard complexity O(N d+2) may be reduced to O(Nd(log N)3).



The algorithm (1.4) can be extended to some problems with time dependent data. In this

case, we clearly need to compress the information in the data such that not all the O(N a+r)

values in, e.g. the inhomogeneous term f(xj, tn) are needed.

One simple but important application of this type is from optics or electro-magnetic

scattering with a time periodic source. If k points are needed to resolve one time period, we

can group k time steps together

k-1

(1.6a) u n+k = Aku '_ + _ AJF,_+k+j_x.
j=O

where

(1.6b) F,_ = Atf(tn).

This equation is now of the type (1.2) with time step kAt and with inhomogeneous term

(1.6c)
k-1

F = _ A jF"+k+j_l.
j=0

In sections 2 and 3 we shall discuss the analytical properties of the algorithm. Numerical

examples are presented in section 4.

2. Hyperbolic Problems

Consider first the simple one dimensional scalar advection equation,

9tu +aO_u = 0, a > 0

(2.3)

Su(_,t) = G(_,u,t)_o(y)du,

u(x,t) = 5(x - y - at)uo(y)dy.
CO

(2.1)
_(x,0) = uo(x), 0 < x < 1.

The functions uo and thus u are assumed to be 1-periodic in x. The solution of (2.1) is given

by:

(2.2) u(x,t) = u0(x - at).

The different rows of A _ in a numerical solution of (2.10) will represent approximations of

the Green's function G below,



Let _j beatruncated waveletexpansionof a 5-function with an orthonormal set of compactly

supported wavelets,

_ojk(x) = 2-½¢(2-Jx- k + 1)

The choices of ¢(x) will be discussed below. Assume that the rows of A _ are discrete g-

functions, i.e. just one element is nonzero and large. For each level j = 1, 2,..., J there are

only a finite number of ajk # O. With J = m = log N there is only log N of all cuk 7_ 0.

Thus each row in B, (1.4), has log N elements, bjk # O. The matrix B 2 is also a transform

of an idealized matrix A" and will have N log N elements different from zero. This means

that each iteration step in the algorithm (1.4) produces O(N(log N) _) flops when F = 0.

We have assumed that calculations are only carried out for those B 2 elements which are

different from zero. In practice a slightly larger number of elements needs to be computed

and then truncated. This corresponds to the case when the location of the 5-functions is

only approximately known. Compare the wavelet technique for Burgers' equation by Maday,

Perrler, and Ravel [6].

Each row of C, (1.4), is a transform of a step function,

const. Ogx<at,6(x) = O, else

This function can also be represented by log N wavelets and thus the overall cost is

O(N(log N)3).

In numerical computations the rows of A" are only approximations of g-functions. If an

upwind scheme,

u2+1 = - - "2-1),

0
(2.4) uj = Uo(Xj), j = 1,2,...N,

is used A will have the form,

A

= aAt/Ax < 1,

l--A 0 ... A

l l-i 0 ... 0

0 i I-A 0 ... 0

0 --. 0 )_ 1-,_

The matrix A _ will have Toeplitz structure. Each row is still an approximation of a 5-

function. The first order smoothing effect of (2.4) is given by the modified equation, [5],

(2.5) Otu + aO_u = (aAx/2)O_u.

4



Equation (2.5) is parabolic with a fundamental solution of the form,

(2.6) G(x- y,t)= (2raAxt)-_ exp(-(x - y -at)2/(2aAxt)).

Compare the solution formula for parabolic problems (3.2).

Each row of A _ is thus a close approximation to the function G(x - y, t) above. The

computational complexity of the algorithm (1.4) depends on how many wavelets are needed

to represent G(x - y, t) as a function of x, (0 < t < T) with a given accuracy.

Higher order accurate (say order 2p-1) dissipative finite difference approximations to (2.1)

are usually modelled by the equation

(2.7) ut+au_= (-1)P+lkp(Ax) 2p-1 \Ox] u.

with kp >__5 > 0, 5, independent of Ax.

The fundamental solution for this parabolic equation is:

a,(x,t) = _ d_exp(i_(x-at)-k,(Ax)2P-l_2"t)).
O0

The key estimate we shall obtain here (and which we certainly do not claim is new) is:

,,(2.8) x m+i G,(x + at, <_ C,_,p

uniformly in 0 < t and Ax and for all nonnegative integers m.

Proof of 2.8. We wish to bound

//1 (i_)mxm+lc_:_k,(A::)2,-_2,d_"

The result is now clear. Also, an inspection of the right hand side of the above shows that

Cm,p can be chosen to be arbitrarily small if t(Ax) 2p-1 is large enough.

Remark R1. Let the general space dependent coefficient, one dimensional system of hy-

perbolic equations

u, + A(x)u= = C(x)u,
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where u is an g vector, A is a uniformly diagonalizable smooth g × g matrix, with all real

eigenvalues A_(x), and C(x) is smooth, be approximated by a dissipative finite difference

scheme of order 2p - 1. Typically, its model equation is a systems version of (2.1)

(0)_, + A(x)u_ = C(x)u + (-1)p+i(zX_)2,-'P _,_ _

where (-1)P+'P(x, o) is a 2p order elliptic operator. A more involved argument shows that

the fundamental solution satisfies an estimate of the type (2.8) with the expression x + at

replaced appropriately by solutions of d,_ = )_(:?) :_(0) = x, i = 1 g and with Cm,p"_ ,...,

possibly growing in time like Cm,_e kt for k fixed.

Our numerical procedure involves the compression of the matrix A", which for the purpose

of analysis only, we shall view as the discretization of the fundamental solution for either

(2.5) or (2.7),

(A'_)jk = G(xj, yk, t n)

where the interval [0, 1] is discretized via

J
xj=-_, j=I,...,N, N=2 _,

[0,1] x [0,1] is discretized via (zj,Yk), and t _ = nat = nAAx, n = 0,1, ....

We now adapt the terminology, notation, and results of [1] to this unsteady problem

(1.1).

Finite difference schemes approximating (1.1), e.g. (2.4) are regarded as acting on a

vector 0 N{Sk}k= 1 which is to be viewed as approximating u(x, 0) on the finest scale:

s_ = 2_/_(2 Vx - k + 1)u(x,O)dz

= f f(x)_p,,k(x)dx.

All functions, both continuous and discrete, are extended periodically:

_(_,t) - _(x+ 1,t)

etc.

The function _ satisfies

0
.3k+ N _ ,$0k

2m--1

_(x) = _ h.+_(2_ - p)
p=O

The function ¢(x) which will generate an orthonormal basis is obtained via

2rn-1

¢(_) = _ g_+_(2z - p)
p----0

6



with gp = (-1)P-lh2m_p+l, p= 1,...,2m and f_(x)dx = 1.

The coefficients {hv}p2_x are generally chosen so that

Cj,k(x) = 2-_¢(2-Jx- k + 1),

for j, k integers, form an orthonormal basis and in addition, the function ¢(x) has m van-

ishing moments

fC(x)x*dx=0, /=0,1,...,m- 1.

Also we define

qojk = 2-2 qo(2-Jx - k + 1).

Finally, we assume that there exists a real constant T,,,(rl = ½) such that the following

conditions are satisfied:

f cp(x+rm)xtdx=O for /?=l,...,m--1,

and f qo(x)dx = 1.

In this case the quadrature formula becomes:

1 k - 1 + O(N_(m+O
s_ - rye(f( N Tin) + ))

and the initial discretization error is O(N -(re+l)) up to uniform translation.

The decomposition of the vector {s°,...,s%} into the basis we use to compute with

comes via

{d_,} ",_ {_}

This is implemented in O(N) operations using:

p=2m

E= gpSp+2k_ x

p=l

and the s_, d_, are viewed as periodic sequences with period 2 _-j.

The orthonormal basis consists of

2 4

The inverse mapping can also be done in O(N) operations.

p=2rn

3jk _ j--1= hp.sp+2k_ 1

p=l



Each of the s_ is thought of as approximating

4 = _)_k(_)dz=

2-( 2 )[f(2-_+J(k- 1 + rm))

while each d{ is thought of as approximating

d{ = f f(x)¢jk(x)dx.

The numerical procedure effectively transforms the approximate discretization of the

matrix G(xj,yk,t '_) which is (An)jk. Estimate (2.8) (corresponding to (4.5) and (4.6) of [1],

uniform in all parameters, indicates (via an argument of [1]) that truncating A" by removing

elements of a band of width b >_ 2m around a shifted diagonal (and its periodic extension)

i.e., those for which

IJ - k - a_nI >_ b > 2m,

which replaces A '_ by A '_'b, leads to an estimate

for C depending only on G.

IIA'_- A",bll < bC-----Zlog(N)

It also follows easily that for large N and fixed precision e, only O(N log N) elements

will be greater than c. Alternatively, by discarding all elements that are smaller than a fixed

threshhold we compress it to O(N log N) elements. Again following the discussion in [1], we

note that this naive approach is to construct the full matrix in the wavelet basis and then

to threshhold. Clearly this is an O(N _) operation.

Since we have, _i priori, the structure of the singularities of the matrix A _ the relevant

coefficients can be evaluated by using the quadrature formulas. Estimate (2.8) guarantees

that this procedure requires O(N log N) operations.

! ;

i (2.9)
i
i

!

'.

Remark R2. It is interesting to note that so called unstable difference schemes can be used

without any drastic loss of efficiency. If (2.1) is approximated by,

_7+' = "7 - _'(uT+_- ,,?_,)/2,

0
ui=uo(xj), j=I,2,...,N

the algorithm is not stable for any fixed A > 0, see e.g. [7].

8



(2.10)

The approximation does convergeif At _<CAx 2, (A < CAx) with an amplification

factor 1 + (.9(At). The number of timesteps for t = (.9(1) calculation will be large, n =

O(Ax -2) = O(N2). This is devastating for the standard explicit algorithm (1.2) but will

only affect the complexity of (1.4) by a constant factor. The number of iterations (m in

(1.4)) will increase from log(N) to log(N2).

Our approach is in general not as favorable for multidimensional hyperbolic systems,

d

Otu + __, Aj(x)O,_u = f(z), x e R a,
j=l

u(x,0) =

When u is a scalar or if the system can be diagonalized the algorithm (1.4) works well. The

solution is given by integration along characteristics and the support of the Green's function

is a small number of points (see Remark (R1) above). In the idealized case each row of

A _ consists of a fixed number of 5-functions. Its wavelet representation will have log(N d)

nonzero terms. The overall complexity for (1.4)is then O((log N)3N d) when the knowledge

of the location of the 5-functions is used. This is better than the standard O(N d+l) estimate.

In general, however, the Green's function for (2.6) has a support with positive volume

in R d and with a singular support of positive measure in Hausdorff dimension d - 1. The

representation of the singular support consists of (.9(Nd-a)6-functions in each row of A _.

This corresponds to O(log(N)N d-l) wavelets and the overall algorithm contains at least

(O(log N)2N _d-1) wavelets.

For general multidimensional problems the new algorithm is still of interest in special

cases, e.g., if the solution is needed only at a fixed number of points and if it is needed for a

large number of different data u0, f.

3. Parabolic Problems

The Green's function for parabolic problems is smooth in contrast to the hyperbolic case.

The pure initial value problem for the heat equation,

Otu= Au, t > O, x E R a,

(3.1)

_(x,0) = _,0(x),

has a solution of the form,

(3.2) u(x,t) = (4_rt)-d/2 aria exp(- Ix - y[2 / 4t)uo(y)dy.



i

I
i
=
-2:

2

=

-°

In bounded domains the kernel has to be changed slightly depending on the boundary

conditions. For positive t(= nat) each row in A" is always an approximation of segments of

regular functions.

Our new technique is in general more favorable for parabolic problems than hyperbolic

ones. The structure of the matrix B in (1.4) is simpler. When t increases the kernel becomes

smoother and ajk can be truncated to zero for all k when j is large enough.

Explicit methods for (3.1) also requires more operations than for hyperbolic problems

when the standard method is used. This follows from the parabolic stability requirement,

(3.3) At _< const. IAxl 2.

The new technique is only marginally affected by the constraint (3.3). Compare here the

discussion above for unstable hyperbolic methods.

In more general higher order multidimensional parabolic cases the fundamental solution

of, e.g.,

u, + (-A)% = 0

is

1 t_o

]_ d(exp(i_.x- 1_12at).

This is merely a multidimensional and rescaled version of the fundamental solution used in

(2.8), and a simpler, but multidimensional version of (2.8) is just:

m-I-1 mllxl O_ Ga(x,t)l < C_a.

Moreover Cmd is arbitrarily small if t is large enough (this of course requires the nonexistence

or other special behavior of lower order terms).

The matrix compression technique is easy here (for periodic problems without boundary

conditions) because the significant terms of [A _] lie near the main diagonal and its periodic

extension in one dimension. In two space dimensions (as is usual for elliptic operators), we

also need to consider diagonals i = j 4- kN for 0 < k _< d. Recall A is an N: × N 2 matrix in

2D.

It is clear that _ priori thresholding (to obtain O(c) precision) near the image of these

diagonals will give us an O(Nd(log N) 3) operation for each evaluation of the solution, where

d is the number of space dimensions for the problem.

4. Numerical Experiments

The algorithm (1.4) was applied to hyperbolic problems in one space dimensions and to

one and two dimensional parabolic problems. Various difference approximations and wavelet

10



spaceswere used. We present results concerningthe accuracyof the calculations and the

sparsity of (SAS-1) '_.

4.1 Hyperbolic problems. Considerthe following scalarhyperbolic problem:

(4.1a)

with periodic boundary conditions (0 < x < 1). We made the following choices:

(4.1b) a(x) = 0.5 + 0.115 sin(4rx)

(4.1c) f(x) = cos(4_'x)

(4.1d) uo(x)=sin(4_rx).

In the discretization, Ax = 1/1024 and At/Ax = 1. The wavelet transform operator

S uses the Daubechies-8 wavelets, which have 8 coefficients and have 4 vanishing moments.

Finite difference schemes of order 1,2,3,4, and 5 of accuracy are tested.

These finite difference schemes are obtained as follows. In each interval

(4.2) Iv_ ½ = 1)Az _<• <  Ax}

a polynomial of degree k is constructed. This polynomial interpolates the two points

?An(x__l, __1) and (x_, u_) and k - 1 of its neighbors. If k is even these interpolation points

go from x___ to x_+_. If k is odd they go from x__(_._)_ 1 to x_+(____). This gives us a

reconstruction function which is a polynomial of degree k in each I_1 and is continuous,
2

but generally not differentiable at the boundary points x_-i and x_. We call this function

Rn,k( )

To approximate (4.1) at the grid points (x_,t _+_) we solve (4.1) "exactly" with initial

data

(4.3) =

for t" _ t < t TM, evaluate the solution at (x_,tn+l), and set u_ +_ = u/,_(x_,t"+_). We

require at m_ I,_(_:)l<xa_ , so the solution depends only on data in Iv_ ½ if a(x) > 0 and Iv+ ½ if

a(z) < O.

11



In the special casewhen a(x) = a, constant, then

"+1 = R",k(x - aat)

(4.4)

tn+l
+at. f(x. - a(t n+l - 8))ds

In the case when f = 0 we get some familiar schemes: For k = 1 this is just the first order

accurate upwind difference scheme (2.4). For k = 2 this is just the classical Lax-Wen&off

second order accurate three point scheme, see e.g. [7]. For k = 3, 4, 5 the schemes are less

studied, but are known to be L 2 stable, see e.g. [9] and the references therein.

For variable coefficients the result is

=

(4.5a)
fdtd n'l" l

+ f(x_(t TM s))ds

where x.(t) solves

dx_ =a(x,.), t"<t<t n+l(4.5b)

(4.5c) x_(t "+1) = x_.

A fourth order Runge-Kutta method is used to integrate the O.D.E. (4:5b,c) and Simpson's

rule is used to evaluate the integral in (4.5a). The result of this approximation to the right

side of (4.5a) is defined to be u_ +1

Returning to the present case the computations ran 13 steps until t = 4, that is,

(SAS-1) 2_3 was computed.

At each step n t_e number of elements of A" and (SAS-a)" whose absolute values are

greater than 10 -4 is shown in table 1. This is for methods whose order of accuracies go from

one through five. The results are also plotted on Figure 1.

These significant elements are located near the sub-diagonal corresponding to the char-

acteristic curve which is known a priori. The image of these locations in (SAS-1) '_, shown

on figure 2, has total length of O(N log N) elements where N = 1024.

In the computation of (SAS-1) ", first, from the knowledge of the PDE, we figure out the

structure of the singularities of A and its image in (SAS-X) ". Then we compute (SAS-_) _" =

(SAS-1) '_ • (SAS-X) n considering only the elements in a neighborhood of the singularities.

In particular, we define the neighborhood of a singularity to be locations whose distance

from the singularity are less than or equal to 5. If the singularities lie on a subdlagonal and

its periodic extension its neighborhood form a subband of bandwidth 11 (the wavelet filters

12



have 8 elements). This bandwidth is independentof the time t (the step n) and the size of

the problem. The errors due to the subband truncation, measured by IIun -  "ll/ll "ll, are

shown in table 2b. Table 2a shows the relative error between the subband truncation and

the exact solution. Here and throughout, "H" I1"denotes the g2 norm. Table 2c shows the

relative error between the subband truncation and untruncated under grid refinement for the

various orders. Unsurprisingly, since the relative length of the subband which is preserved

decreases linearly with grid size, the error increases, but only slightly under this process.

We note that the compression (as seen in Figure 1 and Table 1)is better for odd order

than for even order schemes. This is perhaps not surprising since (2.7) models schemes of

odd order accuracy. Singularities behave a bit differently for even order (say order = 2p)

schemes. These are modeled by

_t n t- alzx

(4.6)

'0 _ 2p+1

I___Xl 2p-I-2
+(-1)Pkp(Ax) 2p+1 u

where kp > 0 and gp are nonzero constants. The odd order dispersive term above may tend

to spread singularities of the fundamental solution spuriously.

Finally table 3 shows the relative error due to truncation when the band width of the

subband is 9, 11, and 13 for the methods of first and second order. Figures 3a and 3b

compare the truncated versus the approximate solutions due to truncation of bandwidth 9

for the first and second order methods (the truncated graphs are dotted).

4.2 Unstable Schemes. For theoretical interest, we apply the method to a finite difference

scheme which is unstable for at = _ > 0

(4.7a) u_ +1 = u_ - ,_(u_+ 1 - u__1)12,

0
(4.7b) uj = uo(xj).

The amplification factor of this scheme is

(4.8) 1-hi sine=r(ei°), -Tr<e<_l

SO

This means that if

Ir(e ")l= (1 + A2 sin 2 e)½.

(4.9) At < 2c(Ax) 2

13



for somec > O, then

(4.10) ][A'_[[,_ <_ e_a*.

The restriction (4.9) means that the operation count for this explicit method would be

• O(N 3) if we were silly enough to use it. However our compression method allows for an

operation count of O(N(log N) 3) for the reasons described above.

Table 4 shows the number of elements in A'* and (SAS-1) " whose absolute values are

greater than 10 -3. We choose a bigger threshold here since we took _ = 1 and nat = 2,

so IIA"]I, as estimated in (4.10) grows to be roughly 10 when we are finished computing.

The error as measured by _ (subband truncation using bandwidth 11) was 0.0136.H_"ll

We also performed convergence studies as we refined the grid for this method. Figures

(4a,b,c) compare the numerical (untruncated) using dots versus exact solution for m =

128,256,512 grid points. The result indicates a second order method, as it should, since At =

(Ax) 2. Figures (ba,b,c) compare the truncated bandwidth (using dots) vs the untruncated

for this method for m # 128,256, and 512 grid points.

The relative error decreases with mesh refinement. The truncation error equation associ-

ated with this scheme involves limited antidiffusion. Perhaps this accounts for this behavior.

4.3 System of Hyperbolic Equations. We apply the method to solving the system of

hyperbolic equations:

 411o 0 [0]0
on 0 < x < 1, t _ 0 with the boundary conditions and initial conditions:

v(0,t) = w(0,0

(4.11b)

w(1,t) = v(1,t)

=

w(x,0) = w0(x)

the coefficient a is chosen to be constant:

a = 0.115.

The numerical method used is the first order accurate upwind method described above.

The results are similar to the scalar case, except the structure of the singularities in the

matrices is more complicated. We have to keep track of reflections of singularities at the

14



boundarieswhich is quite simple in this case.The numberof elements in A" and (SAS-1) '_

whose absolute values are greater than 10 -4 is shown on table 5, and is plotted on figure 6.

The relative error due to the subband of width 11 truncation, measured by I1u" - fi'_ll/llu"ll,

is 0.0149.

The structure of the elements whose absolute values are greater than 10 -4 of A 2°4s and

(SAS-1) 2°4s is shown in figures (7a,c), while Figure (75) shows the image of a subband of

bandwidth 11 in (SAS-1) 2048.

4.4 Parabolic Problems. We do experiments on the following parabolic problem:

Otu = O,(a(x)Oxu) -Jr f(x)

(4.12)

.(x,0) = .0(x)

with periodic boundary conditions (0 < x _< 1). We made the following choices:

a(x) = 0.5 + 0.25sin(2_rx)

f(x) = -_r 2 cos(2_-x) 2 + r2(0.5 + 0.25sin(2rx)) sin(2rx)

uo(x) = sin(4_rx).

The discrete setting and the wavelets are the same as in the hyperbolic problem. We use

the simple explicit central difference scheme (4.13)

At

+ Atf(xj)

(4.13)

where

A_u_ = =l=(u_t:l - uj)

with At/(Ax) 2 = 0.25. The number of significant elements in A n and (SAS-_) _ is shown on

table 6, and is plotted on figure 8.

For the parabolic problem, the large elements of A are in the neighborhood of the main

diagonal. Their wavelet transform image is shown in figure 9. The relative error due to

subband truncation was 0.0025.

4.5 Two-dimensional Parabolic Problems. We consider the following problem:

Otu = allO**u + 2a120,_u + a220_yu

=  o(x,y)

15



with periodic boundary conditions (0 _<x _< 1, 0 _< y _< 1). We choose

all(x,y) = 0.5+0.25sin(2_rx)

a12(x,y) = 0.115sin(27rx)cos(2_ry)

a_(x,y) = 0.5+ 0.25cos(2_y)

uo(x,y) = sin(4_rx)+ cos(8rx).

We use a standard two-dimensional explicit central difference scheme. The two-dimensional

data uj,k, j = 1... N1, k = 1... N2 forms a one-dimensional vector in the following way

{_1,1 . • • 721,N2 _ _2,1 • . * _2,N2, • • • _ ?AN1,1 • • • 'UNI,Na}"

To reduce the size of the problem, N2 is much less than N1. In particular we took N1 =

128, N2 8 that is, Ax = _ Ay - 1

The compression worked quite well. Table 7 shows the number of elements in A n on

(SAS-I) '_ whose absolute values are greater than 10 -4. The relative error due to subband

truncation was 0.0066.
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order ] order 2

n ,4. (SAS-')" ,4" (SAS-')"
1 2048 2,5438 2048 25132

2 3072 26560 4096 2727]

4 5120 25935 6680 27704

8 9216 24609 9464 26701
16 14886 22260 14282 26531

32 2]376 20]67 18812 27349

64 I _7281 1_87 24848I _55
128 41190 [ 11223 32814 I 29381
256 56652 7449 43160 29037

512 78582 5129 57647 27721

1024 113950 3391 81808 25117
2048 1554516' 2342 ]07300 24034

4096 211302 1555 140756 21995

8192 284234 1079 184325 20507

order 4 order 5

. A, (sAs-,). A" (SAS-')"
1 3072 25594 4096 26008

2 6144 27893 716S 28029

4 7690 27651 8138 26913

8 10368 27713 10015 2788]

16 12980 28635 11424 27909

32 16032 29155 13198 28171

64 19376 30313 15172 28347

128 23614 3188(; 17350 28538

256 25834 33780 19566 28273

512 36074 3,T_12 ,t 22'58 28070

1024 47716 36690 ]I 26496 26754

4096 68842 [ 37770 334]0 | 23931

5192 81708 I 37205 36626 | 22147

order 3

,4. (SAS-,).
2048 25688

5120 27359

5868 275,53

9192 26975

10122 25705

11796 26481

13732 26543

16466 25766

19542 9.4104

23662 2109]

30200 179O0

35512 15193

41955 12942

48752 10558

Table 1: Hyperbolic equation: the numl)_" of e]ements in A" amd (SAS-1) "

whose ,bsolute vaJues are greater thin 10 .4

1o,de,] [o,de,2 [orde,3 1orde,4 orde,5
_.,o, l 0.]622[ O.OlO6.1o.oo_51 o.o_o91 0.0]02U

(.)

t I_de,] Iorde,2I orde,3 Io_ae;4 i order_ 11
""°' I 0,0035I 0.0]0_I 0.00_ 1 0.0109I 0.0102II

(b)

(c)

Table 2: H.vpezboli¢ equltion: the ex'rm's, meaann_ b)' Itu" - _'ll/llu'll, (a) c.m_ _'ith

the ea_ solutie=; (b) due to the trumcaticm only; (c) due to U_e ta'tmc_tiou omly tmcle_ grid

n_fxne_e_t.
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width error for order I _ for order 2

9 0.0227 0.0301

11 0.0035 0.0105

13 0.0028 0.0069

Table 3: Errorl measured by _ due to truncation for _rious b_dwidths and en_st

and second order.

D

l

2

4

$

16

32

64

125

256

512

1024

204S

4096

8]92

]63_4

32765

65536

131072

262144

624288

1048576

A" ($AS-I)"

512 SI2

750 512

1024 1336

1024 1764

1024 2328

1024 3060

1024 4028

204S 5273

2045 6302

2560 7447

3432 8360

4566 9308

6330 9266

9362 10557

14332 13346

23872 19255

41490 29649

74750 48595

132916 8458_

132454 106197

132304 110240

130164 115276

Table 4: Hyp_'bollc equation _ms#.able )chime": the =_Lmber of dement) in A" and

(SAS -_)" whose absolute va/ues are greater than lO-*

= I _. (sAs-,I.
11 2048 19351

2i so741 22ss9
41 51251 25327

s[ 61r_I _(o
16i 9228J 25S04

321_333_1 25747
i1948sl =_.

128 [27692J lS985

2s613, ,sl .064
512 J6230$l lOllS

I024[72$14 J 8110

=o4s19-54j

Table 5: System of hyperbol/c equations: The =umbe_ of eleme_t, in A" and (SAS -l )"

wh_ absolute ,m.lu_ ate K_'.ater than 10 -+.
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n A" (SAS-_)"
l 3072 15194

2 5120 ]7342

4 8462 ]g136

8 ]1682 19328

]6 i6214 18775

32 21900 17622

64 30126 14389

128 41434 10387

256 56756 7392

512 78078 ,5073

]024 106976 3554

)2048 146466 2396

4096 199578 1658

6192 272050 1082

TaMe 6: P_rabolic equltion: the number of _eme=ts

_lues _re ip'ea_teTt]alua 10-(

in A m A"d (SA$-_) . whose abr.olute

=

= A"

] 6C32

2 16612

4 '402]0

8 72360

16 105802

32 146292

64 198480

128 269882

256 365456

512 49]936

1024 858%00

2048 891144

4096 ]048576

8]92 1048576

Tab]e 7: 2D-par&bolic equation: the

absolute vLlum ate U_te: fla-,_ 10-'

nu=ber

(SAS-*)"

34190

$2941

72420

8738]

84827

67912

46856

31925

2]497

13653

8703

627]

3373

19_]

ele_enti in A" "d ($A$ -3 )= *bose
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Figure 3b: Truncated versus nontruncated Itpproximste solution, tecond order method,

truncated it bandwidth 9. (Truncated isdotted).
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